Image Super Resolution Reconstruction Based MCA and PCA Dimension Reduction
نویسندگان
چکیده
Image super-resolution (SR) reconstruction is to reconstruct a high-resolution (HR) image from one or a series of low-resolution (LR) images in the same scene with a certain amount of prior knowledge. Learning based algorithm is an effective one in image super-resolution reconstruction algorithm. The core idea of the algorithm is to use the training examples of image to increase the high frequency information of the test image to achieve the purpose of image super-resolution reconstruction. This paper presents a novel algorithm for image super resolution based on morphological component analysis (MCA) and dictionary learning. The MCA decomposition based SR algorithm utilizes MCA to decompose an image into the texture part and the structure part and only takes the texture part to train the dictionary. The reconstruction of the texture part is based on sparse representation, while that of the structure part is based on more faster method, the bicubic interpolation. The proposed method improves the robustness of the image, while for different characteristics of textures and structure parts, using a different reconstruction algorithm, better preserves image details, improve the quality of the reconstructed image.
منابع مشابه
Single frame image super - resolution : should we process locally or globally ?
In this paper we study the usefulness of different local and global, learning-based, single-frame image super-resolution reconstruction techniques in handling three specific tasks, namely, de-blurring, de-noising and alias removal. We start with the global, iterative Papoulis–Gerchberg method for super-resolving a scene. Next we describe a PCA-based global method which faithfully reproduces a s...
متن کاملA super-resolution reconstruction algorithm for hyperspectral images
The spatial resolution of a hyperspectral image is often coarse because of the limitations of the imaging hardware. Super-resolution reconstruction (SRR) is a promising signal post-processing technique for hyperspectral image resolution enhancement. This paper proposes a maximum a posteriori (MAP) based multi-frame super-resolution algorithm for hyperspectral images. Principal component analysi...
متن کاملFeature dimensionality reduction for example-based image super-resolution
Support vector regression has been proposed in a number of image processing tasks including blind image deconvolution, image denoising and single frame super-resolution. As for other machine learning methods, the training is slow. In this paper, we attempt to address this issue by reducing the feature dimensionality through Principal Component Analysis (PCA). Our single frame supper-resolution ...
متن کاملFace image super resolution via adaptive-block PCA
A novel single face image Super Resolution (SR) framework based on adaptive-block Principal Component Analysis (PCA) is presented in this paper. The basic idea is the reconstruction of a High Resolution (HR) face image from a Low Resolution (LR) observation based on a set of HR and LR training image pairs. The HR image block is generated in the proposed method by using the same position image b...
متن کاملRobust Fuzzy Content Based Regularization Technique in Super Resolution Imaging
Super-resolution (SR) aims to overcome the ill-posed conditions of image acquisition. SR facilitates scene recognition from low-resolution image(s). Generally assumes that high and low resolution images share similar intrinsic geometries. Various approaches have tried to aggregate the informative details of multiple low-resolution images into a high-resolution one. In this paper, we present a n...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2018